USING SPEECH PERCEPTION TO ACHIEVE BEST OUTCOMES

HEAR INDIANA 10/3/14

Jane R. Madell, PhD, CCC A/SLP, LSLS Cert AVT www.JaneMadell.com

LEARNING OBJECTIVES

As a result of this continuing education activity, participants will be able to:

- Determine if children are receiving appropriate benefit from technology
- Determine if technology is working in the classroom
- Assist school staff in understanding how to use technology appropriately in the classroom

www.JaneMadell.com

COMPONENTS OF SUCCESS

- · Language at age level
- · Literacy at age level
- Socialization skills at age level

WHAT DOES IT TAKE TO GET THERE?

- Early identification
- Early, appropriately fit technology
- Full time use of technology
- The better you hear the better you learn
- Therapy, preferably auditory based, involving family
- Family support
- Language rich environment
- Opportunities to learn
- Educational program willing and able to make the necessary adaptations for maximizing learning

FIRST YOU HAVE TO HEAR WELL

www.JaneMadell.com

THE BETTER YOU HEAR, THE BETTER YOU LEARN

- Yes, the kids have a hearing loss
- Yes, they are fit with technology
- Are they wearing it? How much?
- BUT IS THE TECHNOLOGY DOING WHAT IT NEEDS TO DO?
 - Never assume
 - If you don't test, you don't know

Hearing

- Hearing is a first-order event for the development of spoken communication and literacy skills.
- Anytime the word "hearing" is used, think "<u>auditory brain</u> development"!!
- Acoustic accessibility of intelligible speech is essential for brain growth.
- Signal-to-Noise Ratio is the key to hearing intelligible speech.
- Our early intervention programs and classrooms must take into consideration the listening capabilities and acoustic access of our children.

		PARENTS			CHILDREN	
	Professional	Working class	Welfare	Professional	Working class	Welfare
IQ age 3			(117	107	79
Vocab size	2,179	1,498	974	1,116,	749	525
Average. Utterances per hour	487	301	176	310	223	168
Average Diff Words per Hour	382	251	167	297	216	149
Average Words per Hour	2,153	1,251	616			
Average Words per 14 hour day	30.142	17,514	8,624			

WHAT DOES THE TECHNOLOGY NEED TO BE DOING TO MEET THE NEEDS OF ACOUSTIC ACCESSIBILITY?

- The child needs to hear throughout the frequency range
 - 6000 and 8000 Hz really do matter
 - Missing high frequencies results in missing grammatical markers for pluralization, possessives, and missing non-salient morphemes (eg morphemes that are not stressed during conversation –eg prepositions)
- · The child needs to hear at a soft enough level
 - Soft speech is about 30-35 dBHL.
 - If a child cannot hear soft speech, she will not hear
 - Peers in the classroom or on playground
 - Will not "overhear" conversation and will have limited incidental learning
 - Will have reduced language and literacy skills
 - Moeller (2011) reported that in her research 40% if children fit with hearing aids were underfit.

Vo	wel Freq	uency B	ands			
	POSITION	VOWEL		1 ^{S1} FORMANT	2 ND FORMANT	
	Front	Wh <u>o</u> W ou ld	u ប	430 540	1170 1410	
		Kn o w M o re	o 5	760 840	1250 1060	
	Middle	Of Art	a a	1030 1020	1370 1750	
		M <u>u</u> st L ear n	Λ 3-	850 580	1590 1740	
	Back	And Then	æ E	1010 690	2320 2610	
		T <u>a</u> ke H i s Ea se	e i	610 530 370	2680 2730 3200	33,1

WHAT DOES INTELLIGIBLE SPEECH LOOK LIKE?

- Every speech sound needs to be audible
- At typical and soft conversational levels
- At distances and up close
 - -"Overhearing" is critical

SELECTION TEST MATERIALS

What is the goal of the evaluation?

- To obtain the highest possible score?
- · To compare child to peers?
- To monitor technology benefit?
- · To monitor treatment?
- To identify specific speech perception errors?

FACTORS AFFECTING SPEECH PERCEPTION IN **INFANTS**

- · Degree of hearing loss
- · Test stimuli
- · Ability to process auditory stimuli

REASONS FOR SPEECH PERCEPTION TESTING

- Determine candidacy for technology
 - Obtaining hearing aids
 - Moving from hearing aids to Cl's
 - Changing hearing aid or cochlear implant settings
- · Assess performance with technology
- Monitor changes in performance over time
- · Identify problems that develop over time
 - Reduction in functioning
 - Equipment problems/failure
 - Specific phoneme perception errors
- Demonstrate habilitation/rehabilitation needs
- Assist in selecting appropriate educational environment and technology

SELECTING TEST MATERIALS

- Linguistically appropriate
 - Not too easy or too hard
- Appropriate level of complexity
 - - Makes use of person's ability to "fill in the blanks"
 - Not necessarily providing accurate measure of what the person
 - For current potential patients with more hearing, sentences may not be the appropriate test of choice for determining candidacy for Cl
 - Monosyllabic words
 - More accurate measure of auditory perception

 - Phoneme testing or phoneme scoring
 Most accurate measure of auditory perception
 - Nonsense syllables

• In daily living people need to hear at - Normal conversational levels (50 dBHL) - Soft conversational levels (30-35 dBHL) • And in competing noise - Normal conversation (50 dBHL+5 SNR) - Using realistic noise (4 taker babble)

PURPOSE OF SPEECH PERCEPTION TESTING Confirm tonal threshold testing Assess ability to perceive speech information Assess auditory processing Assess benefits of amplification Plan and monitor (re)habilitation

TEST PROTOCOL

To determine OPTIMAL speech perception

• test at a sufficiently loud level

To ASSESS DAILY FUNCTIONING test at

- Normal conversational level (50 dBHL)
- Soft conversational level (35 dBHL)
- Normal conversation in competing noise (50 dBHL +5 SNR)
 - Noise needs to be realistic eg four talker babble
 - Classroom noise is at +5 SNR
- Testing auditory processing

www.JaneMadell.com

Normal and soft conversation at 0 SNR (optional)

				Male				Female		
Condition	CA	List	N	WR%	SD	95% CI	N	WR%	SD	95% CI
Quiet 50 dB	3-5	NU-C	14	98	3.7	96-100	12	98	3.2	96-100
Quiet 50 dB	6-8	PBK	13	98	3.1	97-100	12	98	3.2	96-100
Quiet 50 dB	9+	W-22	13	99	1.9	98-100	6	96	5.1	92-100
Quiet 35 dB	3-5	NU-C	19	95	5.2	92-97	13	96	4.8	93-98
Quiet 35 dB	6-8	PBK	23	97	3.7	95-98	24	98	3.1	97-99
Quiet 35 dB	9+	W-22	17	98	2.8	97-100	9	96	4.2	93-98
50 @ +5 SNR	3-5	NU-C	28	93	4.6	91-95	16	94	4.1	92-96
50 @ +5 SNR	6-8	PBK	13	94	4.5	92-96	25	95	5.1	93-97
50 @ +5 SNR	9+	W-22	17	97	4.1	95-99	7	93	3.8	90-96
50 @ 0 SNR	3-5	NU-C	23	91	6.9	88-94	17	92	6.5	89-95
50 @ 0 SNR	6-8	PBK	18	91	5.4	89-93	28	93	6.0	90-95
50 @ 0 SNR	9+	W-22	19	95	4.7	93-97	11	93	4.8	91-96
35 @ 0 SNR	3-5	NU-C	23	90	6.1	87-93	16	92	6.0	89-94
35 @ 0 SNR	6-8	PBK	28	91	6.2	88-93	28	90	6.1	87-92
35 @ 0 SNR	9+	W-22	18	91	6.2	88-94	11	90	7.0	86-94

	Mean score
50 dB in quiet	84%
35 dB in quiet	56%
50 dB +5 S/N	58%
50 dB 0 S/N	46%
35 dB 0 S/N	34%

BY TESTING IN MORE DIFFICULT **CONDITIONS**

- We can get a more realistic picture of every day performance
- Make better decisions about performance
- Better indication of rehabilitation needs
- Make better educational placement recommendations
- Provide better research
- Raise expectations for patients with HL
- Better determination about who needs to move to a CI

QUIET VS NOISE CONDITIONS

- · Quiet speech at comfortably loud levels provides optimal results
- Quiet speech at normal and soft conversational levels provide more realistic comparison to daily listening situations
- Testing at normal conversational levels with competing noise is most realistic test
 - +10 S/N relatively easy
 - +5 S/N most realistic
 - · Typical classroom setting

STIMULUS PRESENTATION

- · Monitored live voice
 - Affected by rate and quality of presentation
 - May not provide sufficient test re-test reliability
 - Useful with young children and others who require flexibility when testing
- · Recorded speech
 - Better test-retest reliability
 - Difficult to get reliable results with patients who require flexibility when testing
 - Results are usually poorer than with MLV

www.JaneMadell.com

OPEN SET VS CLOSED SET

- · Closed set measures
 - Limited set of response possibilities
 - Useful for young children with limited vocabulary because they reduce the confounding variable of linguistic knowledge
 - Useful for patients with articulation which is difficult to access
 - May inflate performance or overestimate speech perception skills compared to real life
 - Inappropriate use

OPEN SET VS CLOSED SET

- · Open set measures
 - More challenging test condition
 - Stimulus possibilities are unlimited
 - More representative of what the listener might encounter in everyday situation
 - Very little kids can do this!

- Why do we need to test more than one condition?
 - Knowing a person hears loud speech well is only part of the information we need.
 - Is it sufficient to hear well in quiet?

FACTORS TO CONSIDER WHEN ASSESSING OUTCOMES

- Stimulus presentation
 - Monitored voice vs recorded
 - Level of difficulty
 - Phoneme whole word scoring
- Testing format
 - Open vs closed set
 - Recorded vs monitored live voice
- · Presentation level
 - Normal, soft and/or loud conversation
 - In competing noise
- · Listening condition

 - Left Binaural
 - FM

www.JaneMadell.com

OTHER FACTORS WHICH MAY AFFECT SPEECH PERCEPTION

- Degree of hearing loss
- Audiometric contour
- Length of hearing loss
- Length of profound hearing loss
- Number of hours/day child uses technology Ability to process auditory stimuli
- Experience with technology
- Demands on using audition

 Educational setting
- Family demands Language level Primary language
- Etiology of hearing loss
- Appropriateness of

 Hearing aid settings
- MAPping strategy, rate, etc.
- Experience of audiology team ane Madell.com

SPEEC	JH PERCE	PHONI	TEST RESUL	.13
	Right	Left	Binaural	Binaural + FM
WORDS				
50 dB HL Words			+	
Phonemes				
35 dB HL Words				
Phonemes				
50 dB HL +5 S/N words				
Phonemes				
SENTENCES Quiet 50 dB				
Quiet 35 dB				
Noise 50 dB+5S/N				V.13

- The more boxes you fill in, the more you will know about functioning
- The more you know about functioning, the better chance you have to improve functioning
 - Improving settings of technology
 - Providing information to the rehab team about what to work on
 - Assisting school in knowing what to expect and planning to maximize functioning

---- loneMedall com

SPEECH THRESHOLD TESTS Speech awareness/detection

- Conversational voice
- Music
- 6 sound a, i, u, sh, s, m (Ling)
- 3 sound ba, sh, s
 - /ba/ approximately 500 Hz
 - /sh/ approximately 2000 Hz
 - /s/ approximately 4000 -5000 Hz
- VRASPAC (infants)
- VRISD (infants)

SPEECH THRESHOLD TESTS
Speech Reception threshold

- Standard spondee pictures
- Standard spondee words
- Familiar objects or toys (infants)
- Body parts (infants)
- Numbers

www.JaneMadell.c

THRESHOLD TEST STIMULI

BY AGE

- 0-9 months
 - SAT (ba /sh /s)
- 9-12 months
 - SAT (ba /sh /s)
 - SRT for familiar words
 - Body parts, toys etc.
- 12 months and older
 - SAT (ba /sh /s)
 - SRT for familiar words, standard spondees

SPEECH PERCEPTION TESTS Closed Set

- Number
- Auditory numbers test (ANT) (Erber)
- Body parts/familiar objects
- PINT
- NU-CHIPS (Katz and Elliot)
- WIPI (Ross and Lerman)
- PSI (Jerger and Jerger)
- Speech Pattern Contrasts (Boothroyd)
- Alphabet test (Ross and Randolph)
- CRISP (Litovsky)
- Western Ontario Plurals test

www.JaneMadell.c

SPEECH PERCEPTION TESTS Open set

- NU-CHIPS words without pictures
- WIPI words without pictures
- PBK (Haskins)
- Isophonemic word lists (Boothroyd)
- Lexical Neighborhood Test
- Modified Lexical Neighborhood test
- CNC
- NU 6
- · Connected discourse tracking
- Western Ontario Plurals test
- Baby Bio's www.JaneMadell.com

SPEECH PERCEPTION TESTS CLOSED SET

Younger Toddlers

- · Body parts/familiar objects
- ESP (Moog and Geers)
- Potato Head (Robbins)
- Auditory numbers test (ANT) (Erber)
- NU-CHIPS (Katz and Elliot)
- CRISP Litovsky

SPEECH PERCEPTION TESTS Open set

Older Toddlers

- NU-CHIPS words without pictures
- WIPI words without pictures
- Alphabet test (Ross and Randolph)
- Isophonemic word lists (Boothroyd)
- Lexical Neighborhood Test
- Modified Lexical Neighborhood test

TESTS FOR PROFOUND HEARING LOSS

- Auditory numbers test (ANT)
- Monosyllabic Spondee Trochee
- Early Speech Perception Testing
- Potato Head Task
- Alphabet test
- Minimal Auditory Capabilities Test
- Test of Auditory Competencies
- Speech Patterns Contrast Test (SPAC)
- Hint and Hint-C (Hearing in Noise Test)
- Western Ontario Plurals Test
- Baby bio's www.JaneMadell.com

Speech Test Protocols by Age								
	0-6 months	6-12 months	12-18 months	18-24 months	24-36 months	3-5 yrs	6-8 yrs	8+ yrs
SAT	Х	х	Х	х				
SRT			Х	Х	Х	Х	х	Х
ESP	Х	х	Х	х				
PINT						х	х	
NU Chips				Х	х	Х		
WIPI						Х	х	
PBK						Х	Х	
NU 6/ CNC							х	Х
HINT							Х	х
Baby Bio's							Х	Х
AZ Bio's			www.Jane	Madell.com				Х

DESCRIBING AUDITORY PERFORMANCE

- Unaided
- · With technology
 - R, L, B, FM
- Speech perception in quiet
 - normal conversational level (50 dB)
 - soft conversational level (35 dB)
- Speech in noise 50 dB HL +5 SNR
- Clued vs unclued materials
- Phoneme vs word vs sentence vs paragraph
- First presentation vs multiple presentations

www.JaneMadell.com

Lets look at some cases www.JaneMadell.com

Avi 4 yrs				
• PTA Righ	nt 84 dB	Left 92 dB		
PBK	R	L	В	FM
50 dB	96%	84%	100%	100%
35 dB			72%	92%
50 dB+5			80%	92%
				200
		www.JaneMadell.com	m	45

SCORING SPEECH PERCEPTION TESTS

- · What is good enough?
- Do kids with HA's need to hear as well as typical hearing kids?
- Do kids with CI's need to hear as well as typical hearing kids?
- If they don't, what do we expect educationally?
- WE ARE NOT EXPECTING ENOUGH FROM THE KIDS

Evaluating the Test Scores

- Speech perception scores
 - Normal vs soft vs loud speech
 - If speech perception is good at loud levels the patient has the ability to understand speech using audition.
 - If scores are poorer at normal conversational levels, maybe the signal needs to be louder
 - Soft speech?
- Right vs Left ear
 - Are results comparable?
 - Check that <u>aided</u> thresholds are similar
 If not, can be improved?

 - Consider working on auditory tasks with the poorer ear alone
 - Improving the poorer ear will improve binaural functioning

- Word scoring vs phoneme scoring
 - Word scoring is a small part of the picture
 - What exactly is the person misperceiving?
 - High frequencies? which frequencies?
 - Vowels is technology providing enough lows
 - · What is the confusion?
 - Bed/bet
 - Shoe/sue • What can be done to change the response of the technology?
- Therapy should work on improving perception of the difficult to hear sounds

www.JaneMadell.com

SUGGESTED SCORING

(again)

 Excellent 90-100%

 Good 80-89% 70-79% Fair

 Poor < 70%

USING TEST INFORMATION

Normal conversation (50 dB)

- If good can hear at 6 ft in quiet
- If poor It will be difficult to hear in a classroom
 - Try testing at louder levels
 - If good, it shows you have auditory potential
 - Try changing HA settings or the MAP
 - · Try increasing sensitivity
 - · Re-test to be sure it is better
 - · Auditory therapy to improve skills

www.JaneMadell.com

- Soft conversation 35 dB
 - If good can hear at 10 feet in quiet
 - If poor it will be difficult to hear other kids in a classroom or social situation
 - Try increasing sensitivity or loudness
 - Try modifying the MAP
 - · Must use FM system in many situations
 - Auditory therapy practice listening to soft speech

UNILATERAL HEARING LOSS

- · Speech perception testing in soundfield
 - Speech on side of poor ear
 - Noise on side of better ear
- If scores are poor for soft speech and/or speech in noise
 - Consider FM
 - Consider HA for poorer ear

